Large Deviations of Divergence Measures on Partitions
نویسندگان
چکیده
We discuss Chernoo-type large deviation results for the total variation , the I-divergence errors, and the 2-divergence errors on partitions. In contrast to the total variation and the I-divergence, the 2-divergence has an unconventional large deviation rate. Applications to Bahadur eeciencies of goodness-of-t tests based on these divergence measures for multivariate observations are given.
منابع مشابه
A note on decision making in medical investigations using new divergence measures for intuitionistic fuzzy sets
Srivastava and Maheshwari (Iranian Journal of Fuzzy Systems 13(1)(2016) 25-44) introduced a new divergence measure for intuitionisticfuzzy sets (IFSs). The properties of the proposed divergence measurewere studied and the efficiency of the proposed divergence measurein the context of medical diagnosis was also demonstrated. In thisnote, we point out some errors in ...
متن کاملLarge deviations for integer partitions
We consider deviations from limit shape induced by uniformly distributed partitions (and strict partitions) of an integer n on the associated Young diagrams. We prove a full large deviation principle, of speed p n. The proof, based on projective limits, uses the representation of the uniform measure on partitions by means of suitably conditioned independent variables.
متن کاملSum rules and large deviations for spectral matrix measures
A sum rule relative to a reference measure on R is a relationship between the reversed Kullback-Leibler divergence of a positive measure on R and some non-linear functional built on spectral elements related to this measure (see for example Killip and Simon 2003). In this paper, using only probabilistic tools of large deviations, we extend the sum rules obtained in Gamboa, Nagel and Rouault (20...
متن کاملInformation Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملDistribution-Invariant Risk Measures, Entropy, and Large Deviations
The simulation of distributions of financial positions is an important issue for financial institutions. If risk measures are evaluated for a simulated distribution instead of the model-implied distribution, errors of risk measurements needs to be analyzed. For distribution-invariant risk measures which are continuous on compacts we employ the theory of large deviations to study the probability...
متن کامل